Cara Kerja NOS (Nitrous Oxide System)


NOS adalah gas Nitrous yang kandungan oksigennya lebih banyak dari udara biasa.

Adapun cara penggunaan untuk pemasangan di mobil :

* tombol NOS ditekan.

* gas nitrous dari botol tercampur dengan bensin.

* masuk ke ruang pembakaran lewat intake.

* menghasilkan ledakan yang lebih bertenaga.

Bisa menambah tenaga mesin sebesar HP 50++. Sangat berbahaya kalau dipakai berturut- turut karena bisa mengakibatkan kerusakan mesin apabila part-part dalam mesin tidak kuat.

Nitrous yang nama bekennya dari N2O ini sering disamakan dengan NOS atau Nitrous Oxide System. Sebetulnya NOS adalah merk nitrous buatan Holley Motor Company. Nitrous ini, apapun merknya prinsip kerjanya sama. Nitrous yang mengandung N2O ini kondang dipakai di ajang balap terutama drag race dan tuning di modifikasi mesin.

Cara kerjanya, Nitrous yg berbentuk cair dalam tabung bertekanan ini cepat menguap di tekanan atmosphere. Senyawa ini yang masuk ke combustion chamber kemudian pecah menjadi 2 unsur yaitu nitrogen dan oxygen. Kadar oxygen di senyawa nitrous oxide ini melebihi setengah kadar oxygen di udara, bercampurnya oxygen ini dengan senyawa hidrokarbon yang selalu terdapat di bahan bakar seperti bensin, solar maupun alkohol ini menghasilkan tekanan kompresi yang mendongkrak tenaga mesin dalam waktu instan selama nitrous ini masih berada di chamber.

Peranan nitrogen disini adalah sebagai pendingin, kompresi dan output tenaga yang instan ini bakal menghasilkan panas yg meningkat instan juga membuat.struktur diatomik nitogen di N2 ini sangat stabil sehingga boost besar pun terjadi.

Penggunaan purge valve yang sering dikatakan ”keren” ini sebetulnya ada gunanya. Purge valve ini fungsi utamanya sebagai alat pembuang angin di saluran. sehingga nitrous langsung berada di selenoid.

Tipe pemasangan NOS antara lain:

1. Wet system

Pemasangan diantara manifold dan throttle body. atau single nozzle di saluran intake. Pemasangan ini mencampurkan nitrous dan bahan bakar di nozzle sehingga dinamakan wet system. Pemasangan ini relatif paling simple dan setingan lebih mudah.

2. Dry system

Pemasangan ini membutuhkan ekstra injektor untuk bahan bakar. Pemasangan nozzle di saluran intake. nitrous akan bercampur dengan bensin di extra injektor ini, lalu kemudian bercampur lagi dengan injektor bahan bakar, baru masuk ke chamber. Pemasangan dan settingan lebih rumit karena setting air-fuel ratio lebih susah. Caranya bisa dengan mengakali MAF sensor. Nozzle ini biasanya diset pada sudut 90 derajat.

3. Direct port system

Pemasangan yang paling rumit. ini membutuhkan pengeboran di manifold. Pemasangan yang langsung ke intake port mesin. prinsipnya mirip dengan wet system. Cuma nozzle yang bercampur bahan bakar + nitrous ini disalurkan secara mandiri ke tiap cylinder. Ada lagi jenis direct system yang multi-point. Ini menghasilkan tenaga paling besar. Nitrous disalurkan memalui 1 nozzle untuk 1 cylinder. Ini juga memungkinkan pemasangan selenoid yang lebih besar.

Masuknya nitrous ini lewat selenoid dan fogger, jenisnya pun beraneka ragam. Pemakaian nitrous identik dengan kecepatan instan dan tenaga instan. Banyak perubahan yang terjadi di mesin untuk pemakaian ini. Salah satu yang perlu diketahui, penambahan tenaga ini identik sama panas mesin, identik juga dengan kenaikkan kompresi. Kenaikkan kompresi inilah yang bisa mengakibatkan mesin berumur pendek.

Buat mobil Natural Aspirated, dimana kompresi mesin sudah tinggi, disarankan untuk tidak memasang nitrous, karena sangat fatal buat mesin. Hanya settingan rendah yang dianjurkan buat keawetan mesin di jangka panjang.

Buat mobil forced-induction, baik turbo maupun supercharged, pemasangan nitrous juga harus diperhitungkan secara teliti sebagai mana mesin natural aspirated. Walaupun mesin forced-induction udah berkompresi rendah, disaat boost masuk, kompresi naik drastis. Ini menghasilkan lonjakan tenaga yang besar.

Disaat kompresi tinggi oleh boost, pemakaian nitrous bisa fatal kalau tidak disertai timing setting yang tepat. Boost yang tinggi oleh turbo/supercharger, ditambah nitrous bisa berakibat komponen mesin rusak, seperti head, valves. piston, conrod bahkan sampai crankcase kalau berlebihan. Ada juga yang sampai retaknya blok dikarenakan mesin tidak bisa menahan lonjakan kompresi dan panas yang dihasilkan nitrous.

Pemasangan nitrous, apapun tipe dan mereknya. harus dipasang oleh orang yang mengerti dan ahli. Ada beberapa merek nitorus yang sudah terkenal seperti NOS, NX express, VENOM. VENOM merupakan salah satu merek termahal , dikarenakan sudah dilengkapi dengan modul untuk mengatur settingan nitrousnya .

Cara Kerja Mobil Listrik




Mobil listrik adalah mobil yang menggunakan listrik sebagai sumber tenaganya. Menurut Internatonal Standard (ISO 8713:2002) Mobil Listik dikenal dalam istilah Electric road vehicles yang di Amerika dikembangkan menjadi dua (2) jenis, diantaranya ; Zero Emission Vehicles(ZEV) dan Low Emission Vehicles (LEV). Mobil listrik yang di kategorikan menjadi Zero Emission Vehicles adalah Mobil Batterai (Battery Operate) dan Mobil Fuel cell. 


Sedangkan yang dikategorikan menjadi LEV adalah mobil yang sistem penggeraknya memadukan antara convensional engine dengan motor listrik (mobil Hbrida).

1. Mobil Listrik “Batterai Operate” Mobil listrik jenis ini mengandalkan batterai sebagai sumber energi untuk menggerakkan kendaraan. Bagian yang sangat penting pada mobil listrik jenis ini ada 5 bagian : 1). Motor listrik. 2). Batterai (AKI). 3). Charger (Alat pengisian ulang energi listrik pada AKI). 4). Sistem Kondali (Controller). 5). Managemen Energi (EMS) atau Energy managemen System

2. Mobil Hybrid Teknologi Mobil hybrid yang dipopulerkan oleh Toyota dan Hondaini, Sebagai solusi menghemat BBM dan mengatasi pencemaran lingkungan. Cara kerja mesin listrik dengan prinsip regenerative (isi ulang/recharging saat kendaraan sedang beroperasi) pada mesin hybrid, berbeda dengan mobil tenaga listrik penuh. Mobil tersebut tidak bisa mengisi ulang listriknya. Bila listriknya habis, Batterai/aki harus di-charge secara khusus dengan waktu 8 hingga 12 jam (untuk teknologi charger onboard). Khusus mesin hybrid, mesin listriknya bisa mengisi ulang ke aki dengan memanfaatkan kinetic energy saat mengerem (regenerative brakeing). Bahkan sebagian energi mesin dari mesin bensin/solar/bio fuel saat berjalan listriknya bisa disalurkan untuk mengisi batterai/aki. 

Dengan sistem operasi seperti ini maka akan terjadi penghematan BBM. Di Kota Tokyo Jepang, truk dan bus sudah banyak yang memakai tenaga mesin system hybrid karena dinilai amat efisien/hemat BBM dan mengurangi polusi. Jenis mesin hybrid secara umum ada yang memakai sistem paralel dan sistem seri, namun yang paling umum adalah parallel. Mesin listrik pada kendaran hybrid sebenarnya hanyalah sebagai penunjang atau bisa disebut booster, pada mesin utama yang memakai bensin ataupun solar. Mesin listrik yang kecil pada kendaraan jenis hybrid tak akan kuat menjalankan mobil secara normal. Perkembangan teknologi mesin hybrid memang kini semakin pesat. Begitu pula dalam pengisian ulang listriknya yang semakin canggih, cepat, dan tenaga mesin listriknya semakin besar.

3. Mobil Surya “Solar Car” Mobil tenaga surya atau tenaga matahari, adalah jenis kendaraan listrik yang menggunakan tenaga matahari sebagai sumber energinya. Energi matahari ditangkap dengan menggunakan panel cell surya kemudian digunakan untuk menggerakkan motor listrik yang berfungsi untuk memutar roda. Agar dapat digunakan secara stabil maka pada mobil surya dilengkapi dengan tempat penyimpanan energy (energy storage) umumnya digunakan accu/batterai. Dilengkapai dengan alat control pengatur kecepatan maka mobil ini dapat melaju sesuai dengan kecepatan sesuai dengan kecepatan yang dirancang.Di Indonesia berkisar 12 tahun yang lalu mobil surya ini dikembangkan oleh mahasiswa ITS Surabaya.
4. ’Mobil Fuel Cell’ Fuel Cell adalah sebuah terobosan teknologi yang dilakukan oleh kalangan ilimuan dan industri mobil untuk mencari sumber energi alternatif penggerak mesin. Dan salah satu pilihan terkuat adalah bahan bakar hidrogen, dipilihnya hydrogen karena dianggap memenuhi dua alasan utama, yakni karena hidrogen ramah lingkungan. Gas buang hasil pembakaran hidrogen sama sekali tidak mencemari lingkungan. Alasan kedua, karena secara alamiah hidrogen tersedia dalam jumlah besar hingga bisa dimanfaatkan dari generasi ke generasi. Hidrogen secara ekonomis dapat diperoleh dengan murah. 

Siklus air juga memungkinkan hidrogen tersedia dalam jangka panjang. Hidrogen merupakan salah satu pilihan kuat sebagai bahan bakar mobil masa datang, menggantikan peran bahan bakar minyak (BBM) yang tingkat polusinya tinggi dan makin tipis ketersediaannya di alam. Hidrogen bisa diperoleh dengan cara melalui proses meng elektrolisa air. cara ini dianggap tidak mengubah keseimbangan alam, sangat simpel, efektif dan bersih. Yakni dengan teknik elektrolisa air dalam jumlah besar dengan menggunakan tenaga listrik. 

Caranya dua elektroda dibenamkan ke dalam bak berisi air, untuk memancing hidrogen. Ion-ion hidrogen yang bermuatan positif (kation) berkumpul di sekitar katoda negatif. Sedangkan ion-ion oksigen (anion) dikumpulkan menuju anoda positif. Dengan begitu terbentuklah hidrogen dalam bentuk gas. Setelah hydrogen dalam bentuk gas didapatkan, maka melalui teknologi pembakaran ‘dingin’ di dalam sebuah sel listrik, yang hasilnya berupa tenaga listrik untuk menggerakkan mobil.

Prinsip Kerja

Energi Listrik yang bersumber dari listrik PLN atau Generator melalui alat pengisisan (Charger) yang berfungsi untuk mengubah arus bolak balik (AC) menjadi arus searah (DC) sesuai dengan kebutuhan pengisian dari baterai melalui dua buah kabel yaitu positif dan negatif untuk mengisi baterai. Baterai terdiri dari 3 unit, 12 Volt, 200 Ah dipasang secara seri dimana terminal positf  baterai 1 dihubungkan ke terminal negatif dari baterai 2 dan terminal positif dari baterai 2 dihubungkan ke terminal negatif baterai 3 sedangkan terminal negatif dari baterai 1 dan terminal positif baterai 3 didapatkan keluaran 36 Volt,200 Ah



Setelah baterai penuh, listrik yang tersimpan pada baterai dapat digunakan untuk memutar motor penggerak melalui solenoid yang memiliki 2 terminal yang berfungsi menyambung  dan memutus dimana terminal positif pada baterai dipasang pada salah satu terminal pada solenoide dihubungkan ke kendali kecepatan, dimana solenoide ini dikendalikan oleh dua buah saklar pembatas yang di pasang pada sistem gas dan rem yang hanya dapat berfungsi setelah kunci kontak dinyalakan.


Untuk mengatur besar kecilnya putaran motor penggerak digunakan kendali kecepatan yang memiliki 4 buah terminal utama yang diberi tanda masing masing terminal Bat +, Bat -,A2, M -, dan juga tiga buah terminal untuk input dari potensio atau induktiv. Kabel positif yang melalui solenoid dihubungkan pada terminal Bat + pada kendali kecepatan. 



Kendali yang inputnya berupa sinyal analog dari potensio dan juga induktiv trhole sensor yang dipasang pada mekanisme gas, agar kendaraan dapat bergerak maju,mundur dan netral digunakan saklar mekanis maju mundur SM3 ( saklar mekanis maju mundur ) yang di beri nama masing masing terminal a1,a2, b, c d1,d2 terminal C dihubungkan ke terminal A2 kendali kecepatan, melalui terminal A2 pada motor penggerak. Terminal M- pada kendali kecepatan dihubungkan langsung ke A1 pada motor penggerak. Untuk terminal B dan D pada SM3 memiliki dua buah kutub dimana difungsikan untuk membolak balikan input arah arus pada terminal S1 dan S2 pada motor penggerak

Sistem Penggerak

Saklar pembatas yang dilengkapi dengan pelatuk menempel pada bagian batang pengungkit yang berkerja apabila pedal rem ditekan batang pengungkit juga akan menekan pelatuk dari saklar pembatas sehingga arus yang mengalir melalui terminal penghubung dari saklar pembatas akan terputus seketika apabila proses pengereman mekanis pada roda kendaraan listrik ini yang digerakkan. 



Proses penekanan batang pengungkit terhadap pelatuk saklar pembatas dapat disetel jarak aktifnya agar pada saat mengemudi menenmpelkan kakinya pada pedal rem yang tanpa bermaksud menekan sehingga saklar pembatas tidak akan berfungsi tapi apabila tekanan yang diberikan melebihi batas yang diberikan maka saklar pembatas akan bekerja dengan baik, tujuannya adalah apabila sistem penggerak mobil listrik ini sedang beroperasi tiba tiba pengendara menekan pedal rem maka beban yang diakibatkan oleh pengereman tidak akan berpengaruh pada sistem tenaga karena terlebih dahulu sistem daya telah terputus melalui saklar pembatas yang dipasang sebagai pengaman.



Untuk mengoperasikan kenderaan listrik ini pada systen penggerak ini hanya dapat dioperasikan apabila kunci kontak di on kan atau dinyalakan kemudian pedal gas ditekan, dapat dijelaskan bahwa apabila pedal gas ditekan maka batang penarik akan menarik pengungkit poros dari potensio kemudian pengungkit tersebut akan melepaskan tekanan pelatuk saklar pembatas sehingga arus listrik yang akan menggerakkan solenoide dapat terhubung melalui terminal 1 dari saklar pembatas. 


Sistem ini bertujuan agar energi listrik tidak terbuang percuma pada saat kendaraan mengalami jalan penurunan atau pada jalur macet dan juga berfungsi sebagai pengaman.

Untuk Sistem maju mundur dengan menggunakan SM3, seperti diperlihatkan pada gambar dapat dijelaskan bahwa :



Prinsip dasar pembalikan putaran motor penggerak jenis ini dapat dilakukan dengan pembalikan arah arus yang mengalir pada lilitan stator motor, untuk arah maju berarti arus yang mengalir dari terminal C pada SM3 kemudian mekanis saklar memindahkan hubungan secara mekanis menyambungkan C ke terminal B pada SM3 kemudian dihubungkan ke terminal S1 pada motor penggerak sehingga arus mengalir menuju terminal S2 pada motor penggerak yang langsung dihubungkan ke kendali kecepatan pada terminal M-.



Untuk posisi mundur yang diperlihatkan pada gambar dilakukan dengan pembalikan arah arus yang diperlihatkan bahwa arus yang mengalir dari terminal motor A1 dengan menggunakan SM3 dihubungkan dengan terminal A pada SM3(5) kemudian mekanis saklar memindahkan hubungan secara mekanis menyambungkan terminal C ke terminal D pada SM3, kemudian dihubungakan ke terminal S2 pada motor penggerak yang langsung dihubungkan ke kendali kecepatan pada terminal M-. Berikut penjelasan penggunaan SM3 pada sistem Maju Mundur dan Netral dapat dilihat pada gambar di bawah :




Agar kendaraan dapat bergerak maju, mundur dan posisi netral digunakan alat saklar mekanis maju mundur (SM3) pada gambar, yang memiliki enam terminal yang diberi kode masing masing a,b,c,d. Terminal a dihubungkan ke terminal A kendali Kecepatan melalui terminal A1 dan A2 pada motor penggerak. 



Terminal c pada SM3 dihubungkan langsung ke terminal M dari kendali kecepatan. Untuk terminal b & d memiliki dua buah kutub dimana difungsikan untuk membolak balikan input arah arus pada terminal S1 & S2 pada motor Penggerak.

Penggunaan mikro switch sebagai pengaman dan efisiensi energi seperti pada gambar di bawah sebagai berikut :




Penggunaan Mikri swicth pada sistem mekanis gas untuk pengaman sistem dan efesiensi penggunaan daya listrik

Dengan Pemakaian mikro switch yang menempel pada mekanis gas yang berfungsi mengamankan sistem daya, karena sistim hanya dapat menerima daya listrik apabila pedal gas ditekan setelah kunci kontak di ON kan, sekaligus juga dapat menghemat energi listrik pada saat kendaraan menempuh jalanan macet dan penurunan



Untuk mengantisipasi kebiasaan pengemudi yang biasanya menekan pedal gas terkadang bersamaan dengan pengereman mekanis, juga digunakan mikro switch sebagai pembatas seperti terlihat pada gambar dibawah

Seperti yang dijelaskan diatas mobil listrik memiliki sistem penggerak listrik yang lebih sederhana dan efisien. Dengan melakukan pemilihan beberapa komponen yang digunakan serta disederhanakan, dikurangi dan disatukan. Sehingga sistem penggerak mobil listrik terdiri dari sistem energi, sistem kendali, sistem maju mundur dapat berfungsi dengan baik.

PRINSIP KERJA MOBIL HYBRID


Mobil hybrid adalah mobil yang memiliki sistem penggerak ganda, atau disebut “hybrid” (dalam istilah pertanian hybrid berarti perkawinan silang). Dalam mobil ini, ada “perkawinan” antara penggerak yang konvensional yakni dengan bahan bakar bensin dan penggerak dengan energi listrik.. Berikut ini bagannya :

Mobil Hybrid menggabungkan kedua sumber tenaga, yang dapat dilakukan dengan dua buah cara yang berbeda yaitu: (1) Hybrid paralel dan (2) Hybrid seri. Hybrid paralel memiliki tangki BBM yang menyuplai bensin ke mesin. Hybrid tipe ini juga memiliki baterai yang menyuplai tenaga listrik ke mesin elektrik. Baik mesin bensin maupun mesin elektrik dapat menggerakkan transmisi pada saat bersamaan, dan selanjutnya transmisi akan menggerakkan roda. Pada tipe ini tangki bensin dan mesin gas terhubung ke transmisi secara independen yang mengakibatkan baik mesin elektrik dan mesin gas dapat menghasilkan tenaga pendorong.
Cara kerja mesin listrik dengan prinsip regenerative (isi ulang/recharging saat kendaraan sedang beroperasi) pada mesin hybrid, berbeda dengan mobil tenaga listrik penuh. Mobil tersebut tidak bisa mengisi ulang listriknya. Bila listriknya habis, Batterai/aki harus di-charge secara khusus dengan waktu 8 hingga 12 jam (untuk teknologi onboard charger). Khusus mesin hybrid, mesin listriknya bisa mengisi ulang ke aki dengan memanfaatkan energi kinetik saat mengerem (regenerative braking). Bahkan sebagian energi mesin dari mesin bensin/solar/biofuel saat berjalan listriknya bisa disalurkan untuk mengisi batterai/aki. Dengan sistem operasi seperti ini maka akan terjadi penghematan BBM.
Berbeda dengan hybrid paralel, pada hybrid seri mesin bensin bekerja sebagai generator yang berfungsi sebagai pembangkit baterai atau tenaga motor elektrik yang menggerakkan transmisi. Mesin bensin tidak pernah langsung menjadi tenaga penggerak kendaraan. Sistem kerja pada hybrid series dimulai dari tangki bensin menyuplai bensin ke mesin gas yang selanjutnya menyuplai tenaga ke generator, lalu tenaga yang dihasilkan generator didistribusikan ke baterai dan mesin elektrik. Energi pada baterai sendiri selain dari generator, juga dihasilkan saat terjadi pengereman. Tenaga dari mesin elektrik kemudian menggerakkan transmisi dan selanjutnya menggerakkan roda.
Cara Kerja Mobil Hybrid Paralel
Mesin mobil Hybrid-pararel, gambar di bawah menerangkan bagaimana prinsip dasar cara kerja mesin hybrid-pararel.
Dengan bantuan kopling otomatis kita dapat memilih mode apa yang akan di gunakan selama kita mengemudikannya, apakah dengan menggunakan mesin listrik yang energinya bersumber dari baterai atau mode “energy recovery (pengecasan baterai)” tanpa menghambat perputaran mesin bensin/diesel yang berlebihan sewaktu mode “energy recovery ini kita gunakan.
Mesin elektrik dapat kita fungsikan tanpa ketergantungan mesin bensin/diesel yang berarti kita dapat bebas memilih mesin apa yang akan kita gunakan sesuai keinginan kita.
Oleh karena itu mobil Hybrid dapat dikombinasikan dengan mesin yang memiliki kapasitas 3-cylinder sampai yang berkapasitas besar 8-cylinder.
Modus konventional.
Dalam gambar ini menunjukkan mesin Hybrid-pararel bekerja /bergerak seperti mobil biasa yang menggunakan mesin bensin/diesel energie dialirkan dari mesin ke roda-roda kendaraan. Selama proses ini bekerja mesin elektrik dan komponen-komponen pendukungnya dalam keadaan tidak aktif.
Modus elektrik
Dalam kondisi seperti ini mesin elektrik merupakan penggerak utama, energi mesin elektrik bersumber dari baterai dan juga dalam kondisi seperti ini mesin bensin/diesel dalam keadaan mati.
Modus Boosten
Dalam kondisi seperti ini kendaraan dalam keadaan kecepatan tinggi/memerlukan energie yang besar sehingga dalam kondisi seperti ini baik mesin elektrik dan mesin bensin/diesel bekerja dalam waktu yang bersamaan. Dalam kondisi seperti ini mesin elektrik mendapat suplai energi listrik dari baterai.
Modus energy recovery
ketika kendaraan melakukan pengereman dengan bantuan mesin elektrik saat itu juga mesin elektrik dapat kita sebut sebagai generator yang menghasilkan energie listrik .Konsep ini sama seperti lampu sepeda yang menggunakan energie listrik dengan bantuan perputaran roda atau turbin pada bendungan yang merubah energi gerak menjadi energi listrik. Energie listrik yang dihasilkan selama pengereman kemudian disimpan di baterai. Dalam kondisi ini Kopling otomatis dalam kondisi bebas sehingga perputaran mesin bensi/diesel tidak mengalami gangguan atau hambatan.
Modus Energy saving
Dalam kondisi ini mesin bensin/diesel berputar dengan putaran mesin yang tinggi saat itu pula sebagian kecil energie gerak yang dihasilkan dari perputaran mesin yang tinggi di manfaatkan oleh mesin elektrik yang berfungsi juga sebagai generator (penghasil listrik) yang kemudian di simpan ke baterai dan sebagian besar energi gerak di salurkan langsung ke roda kendaraan.

Merawat Aki, Cek Tinggi Dan Kualitas Air


Merawat Aki, Cek Tinggi Dan Kualitas Air

JAKARTA - Aki atau baterai salah satu komponen yang vital dari kelistrikan sebuah kendaraan, bila sampai rewel mesin jadi susah dihidupkan. Masalahnya bisa karena hal sepele, kurang perhatian dan perawatan.

Pada aki mobil misalnya, meski usianya bisa beberapa tahun, tetapi jika kurang perawatan umur pakainya jadi lebih cepat. Sebenarnya tak sulit merawat aki, namun yang namanya lupa, kadang baru sadar setelah mesin tidak bisa distarter atau butuh waktu lama untuk menghidupkannya.

Jangan Disikat
Sebagai alat penyedia arus listrik untuk starter mesin, penerangan dan kelistrikan aksesori seperti sistem audio, alarm dan sebagainya, peran aki sangatlah penting. Juga untuk menstabilkan tegangan di kendaraan. Jika kurang dirawat, kerjanya tidak optimal dan bakal cepat rusak.

Untuk itu lakukan pengecekan air aki secara rutin. Tambah jika kurang. "Kalau merawatnya bagus, aki basah bisa sampai 3 tahun. Jaga posisi ketinggian air aki berada di batas indikator permukaan. Yaitu sampai tanda ‘upper level' dan jangan sampai di bawah ‘lower level'," jelas M. Aedi, kepala bengkel Tunas Toyota di Jln. Raya Kebayoran Lama No.38, Jakbar.

Jangan sampai kelebihan atau kekurangan. Apalagi sering habis, bisa berakibat sel (lempengan di dalam aki) jadi lemah. Yang tadinya 12V bisa turun, inilah yang sering disebut aki soak. Selain itu berat jenis airnya jadi tawar, tidak asam lagi karena tidak ada penghantar (air aki). Harusnya elemen itu kerendam.

Kendaraan yang dipakai sehari-hari, minimal dilihat sebulan sekali. Di lain hal, cek juga kepala aki, pastikan jepitannya masih kencang atau tidak longgar waktu digoyang-goyang.

 Battery Starter Tester dapat mengetahui kualitas aki kendaraan yang sedang dipakai
Jaga kebersihannya, apakah ada karat putih di seputar jepitan aki. "Cukup dengan disiram air panas, lalu olesi grease (gemuk) sedikit biar kepala aki tidak timbul karat putih lagi," lanjut pria murah senyum ini.

Ia tidak menyarankan dibersihkan pakai ampelas atau sikat kawat. Lama-lama bulat kepala aki bisa aus, pas saat dipasang jepitannya jadi tidak maksimal. Kalau sudah begitu, biasanya dipaksa seperti diganjal. Akibatnya pengisian arus juga kurang maksimal.

Untuk aki maintenance free (MF), perlakuannya sama saja, seperti dijaga korosinya. Jika terawat dapat tahan 3 tahun. Hanya bedanya tidak perlu diisi air aki lagi. Tetapi ada juga yang sudah pakai indikator, merah dan hijau. Kalu sudah merah, ya tanda mulai soak.

Jika ragu atau mengalami kenapa kemampuan akinya kurang maksimal, bisa periksa ke bengkel. Kalau di bengkel Toyota ada alat battery starter tester. Ini untuk mengetahui kondisi aki, apakah masih bagus, warning atau sudah soak.

"Di alat ini ada tanda hijau, kuning dan merah. Dengan menjepit ke terminal negatif dan positif aki diikuti memencet sebuah tombol selama 5 detik, dapat dilihat kondisi aki," terang Syam Mulyono, salah seorang teknisi.

 Jaga kebersihan kepala aki, bersihkan dari karat putih, tetapi jangan diampelas atau disikat
Lewat battery tester, juga dapat dipantau bagaimana pengisiannya, apakah overcharging. Lalu lanjutkan dengan tes pakai hydrometer buat mengetahui berat jenis airnya, apakah masih sesuai keasaman strandar atau sudah mulai tawar.

Buat kondisi darurat (tanpa alat tes dan dilakukan sendiri), bisa dengan cara mencabut kabel terminal negatif saat mesin hidup. Kalau mati, berarti alternatornya yang sudah jelek. "Pemilik mobil harus hati-hati, kadang ada bengkel bilang akinya mesti diganti, padahal masih bagus dan yang rusak alternatornya," tutur Syam.

Disarankan mobil dibawa ke bengkel untuk diperiksa kondisi akinya. Selain lebih ahli, mereka juga punya perlataan lengkap. 

POMPA INJEKSI DISTRIBUTOR TIPE VE


POMPA INJEKSI DISTRIBUTOR TIPE VE

POMPA INJEKSI DISTRIBUTOR TIPE VE
Gambaran secara umum pompa injeksi distributor VE
Pompa injeksi distributor tipe VE dirancang dengan plunyer tunggal untuk mengatur jumlah bahan bakar yang diinjeksikan dengan tepat dan mendistribusikan bahan bakar ke setiap silinder mesin sesuai dengan urutan penginjeksiannya.


Gambar 1. Pompa Injeksi Distributor Tipe VE

Keterangan:
1) Poros penggerak pompa
2) Pompa pemberi (feed pump)
3) Katup pengatur tekanan
4) Roda gigi penggerak governor
5) Cincin tol
6) Cincin nok
7) Automatic timer
8) Busing pengatur
9) Plunyer
10) Delivery valve
11) Governor
12) Solenoid
13) Penyetel gas maksimal
14) Spunyer
15) Tuas pengatur
Komponen – komponen utama pada pompa injeksi distributor tipe VE :
a. Pompa pemberi (feed pump)
Pada pompa injeksi distributor yang sering digunakan yaitu tipe sudu rotary yang berfungsi untuk menghisap bahan bakar dari tangki dan menekannya kedalam ruang pompa injeksi.
 
Gambar 2. Pompa Pemberi
b. Katup pengatur tekanan
Katup pengatur tekanan berfungsi untuk mengatur tekanan bahan bakar kedalam ruang pompa sesuai dengan putaran mesin.
Gambar 3. Katup Pengatur Tekanan
c. Plunger dan plat nok (cam plate)
Plunger berfungsi mendistribusikan bahan bakar sesuai dengan FO mesin.
Untuk plat nok berfungsi untuk menekan plunger agar plunger bergerak maju sehingga mengahasilkan tekanan tinggi pada bahan bakar dan sekaligus bahan bakar yang ditekan disalurkan untuk didistribusikan ke tiap silinder sesuai FO
 
Gambar 4. Plunger dan Plat Nok
d. Governor mekanik (mechanical governor) yang mengatur jumlah bahan bakar yang diinjeksikan ke dalam ruang bakar.
 
Gambar 5. Governor
e. Pewaktu otomatis (automatic timer) yang mengatur saat injeksi (injection timing) yang bekerja menurut tekanan bahan bakar.
 
Gambar 6. Pewaktu Otomatis
f. Solenoid penutup bahan bakar (fuel cut-off solenoid) yang digunakan untuk menutup aliran bahan bakar ke dalam elemen pompa.
 
Gambar 7. Selenoid Penutup Bahan Bakar
g. Katup penyalur (delivery valve) berfungsi mencegah bahan bakar dari dalam pipa tekanan tinggi masuk ke dalam ruang elemen pompa dan mengisap sisa bahan bakar dari injektor pada akhir injeksi
 
Gambar 8. Katup Penyalur

CARA KERJA SISTEM POROS PENGGERAK RODA


Sistem Propeler

Sistem Propeler Shaft 

(KERJA SISTEM POROS PENGGERAK RODA)

POROS PENGGERAK RODA


A. Konstruksi dan kerja sistem poros penggerak roda
Putaran mesin dari fly wheel roda penerus diteruskan ke transmisi melalui kopling. Agar putaran dari mesin sampai ke roda diperlukan berbagai alat, yaitu poros propeller, differential, dan poros roda (axle shaft). Poros penggerak roda termasuk komponen dari power train system (sistem pemindah tenga).
Agar komponen-komponen di bawah tetap dapat bekerja baik, minimal 10.000 km sekali harus dilakukan pengecekan, penyervisan, pmeriksaan, dan perbaikan. Hal tersebut untuk menjamin agar komponen-komponen/spare part tetap awet dan jauh dari keausan.
1. Poros Propeller (propeller shaft)
Poros propeller sering dinamakan dengan as kopel. Fungsinya untuk meneruskan putaran mesin dari transmisi ke differential (gardan). Ada bermacam-macam bentuk konstruksi dari propeller.
Pada kendaraan tipe front engine rear drive, mesin,kopling, dan transmisi terletak dibagian depan. Sedangka rear axle dan rear wheel yang dibantu oleh suspension terletak di bagian belakang. Untuk memindahkan tenaga mesin ini ke sistem penggerak roda belakang, maka digunakan propeller shaft transmisi dengan differential.
Karena kondisi jalan yang berada, maka letak dari rear axle shaft terhadap transmisi selalu berubah-ubah. Oleh karena itu, propeller shaft harus dibuat sedemikian rupa. Sehingga dapat mengatasi segala perubahan tersebut. Seperti perubahan panjang pendek maupun harus berputar secara lancar walaupun terjadi sudut propeller shaft. Oleh karena itu, propeller shaft biasa terbuat dari steel tube yang tahan terhadap puntiran. Untuk menghindarkan getaran (vibrasi) yang berlebih-lebiha biasanya dipasang balance weight pada propeller shaft.
Pada umumnya, propeller shaft terdiri dari satu batang ( ball joint ). Untuk propeller shaft yang panjang digunakan 2 batang dengan 3 joint, hal ini dimaksudkan untuk mencegah timbulnya vibrasi yang besar, propeller shaft mudah melentur dan jalannya kenaraan tidak nyaman. Sehingga pada umumnya, apabila propeller shaft terlampau panjang, dibagi menjadi 2 atau 3 bagian dengan 3 atau 4 joint.
Propeller shaft dibuat sedmikian rupa agar dapat memindahkan tenaga dari transmisi ke deferential dengan lembut tanpa dipengaruhi akibat adanya perubahan-perubahan tadi. Utnuk tujuan ini, universal joint dipasang pada setiap ujung propeller shaft, fungsinya untuk menyerap perubahan sudut dari suspensi.
Selain itu, sleeve yoke bersatu untuk menyerap perubahan antara transmisi dan differential.

a. Universial joint (Sambungan Universal)
Universal joint harus dapat mengatasi segala kondisi pada waktu propeller shaft berputar dari kemungkinan patah dan sebagainya, hubungan dengan transmisi harus tetap. Eh karena itu, universal joint harus mempunyai syarat-syarat sebagai berikut.
1. Dapat menghindari kerusakan pada saat propeller shaft bergerak naik turun.
2. Tidak berisik dan harus dapat berputar dengan lembut.
3. Konstruksinya harus sederhana dan tidak mudah rusak.
Dilihat dari konstruksinya, maka universal joint dibagi menjadi beberapa jenis, yaitu hook joint, slip joint, trunion joint, fleksible joint, dan uniform velocity joint.


1. Hook joint
Konstruksi sederhana dari hook joint yang bekerja konstan. Hook joint tersebut menggunakan 2 buah yoke, salah satu yoke digabungkan dengan propeller shaft, sedangkan spider dan bearing. Untuk mencegah keausan, maka bagian spider yang berhubunga dengan roller bearing dibuat lebih keras. Untuk mengurangi gesekan yang terjadi bentuk bearing menggunakan model roller bearing yang ditutup dengan cup. Supaya bearingnya tdak terlepas pada waktu propeller shaft berputar dengan kecepatan tinggi, maka snap ring atau lock plate dipasangkan pada yoke.

2. Slip joint
Panjang propeller shaft dapat berubah-ubah disebabkan adanya perubahan posisi antara transmisi dan poros-poros belakang. Bagian ujng proprller yang dihubungkan dengan poros output transmisi terhadap alur-alur untuk pemasangan slip joint, hal ini memungkinkan panjangnya propeller shaft sesuai dengan jarak output shaft dengan defferential.

3. Trunion joint
Trunion joint adalah kombinasi antara hook joint dengan slip joint. Ddalam bodi terdapat alur sebagai tempat masuknya propeller shaft dan ujung pin dipasangkan ball. Model ini sekarang jarang digunakan karena dalam memindahkan daya /tenaga masih kurang baik dibandingkan dengan model slip joint sendiri.

4. Flexible joint
Flexible joint terdiri dari coupling, rubber coupling, dan sleeve yoke yang dihubungkan atau diikat oleh baut. Model ini mempunyai keuntungan tidak mudah rusak, tidak berisik, dan tidak memerlukan minyak/grease. Tetapi apabila sudut Anaya drive shaft dan driven shaft melebihi 7-10°, maka akan timbul juga vibrasi. Untuk menghindari hal ini, maka dipasngka center ring ball pada ujungnya.

5. Uniform velocity joint
Joint ini dapat membuat kecepatan sudut yang lebih baik sehingga dapat mengurangi vibrasi dan suara bising, akan tetapi hargana relative lebih mahal. Tipe ini digunakan pada kendaraan yang menngunakan system pemindaha daya tipe from engine front drive (FFI), missal pada TOYOTA COROLLA FF dan starlet.

Sistem Differensial/Gardan Cara kerja gardan


Fungsi utama gardan adalah membedakan putaran roda kiri dan kanan pada saat mobil sedang membelok.Hal itu dimaksudkan agar mobil dapat membelok dengan baik tanpa membuat kedua ban menjadi slip atau tergelincir.  Adapun cara kerja gardan adalah sebagai berikut :


Pada saat mobil berjalan lurus : 
Pada saat mobil berjalan lurus keadaan kedua ban roda kiri dan kanan sama - sama dalam kecepatan putaran yang sama.Dan juga beban yang ditanggung roda kiri dan roda kanan adalah sama. Sehingga urutan perpindahan putaran dari as kopel  akan diteruskan untuk memutar drive pinion . Drive pinion akan memutar ring gear , dan ring gear bersama - sama dengan differential case akan berputar. Dengan berputarnya differential case , maka pinion gear akan terbawa berputar bersama dengan differential case karena antara differential case dan pinion gear dihubungkan dengan pinion shaft. Karena beban antara roda kiri dan roda kanan adalah sama saat jalan lurus , maka pinion gear akan membawa side gear kanan dan side gear kiri untuk berputar dalam satu kesatuan. Jadi dalam keadaan jalan lurus sebenarnya pinion gear tidak berputar , pinion gear hanaya membawa side gear untuk berputar bersama - sama dengan differential case dalam kecepatan putaran yang sama. Bila differential case berputar satu kali , maka side gear juga berputar satu kali juga , demikian seterusnya dalam keadaan lurus. Putaran side gear ini kemudian akan diteruskan untuk menggerakkan as roda dan kemudian menggerakkan roda. 


Pada saat kendaraan membelok : 
Pada saat mobil sedang membelok beban yang ditanggung pada roda bagian dalam adalah lebih besar daripada beban yang ditanggung roda bagian luar . Misalkan sebuah mobil sedang belok ke kiri, maka beban pada roda kiri akan lebih besar daripada beban roda kanan. Dengan demikian urutan perpindahan tenaganya adalah sebagai berikut ; P:utaran dari as kopel akan diteruskan untuk memutar drive pinion . Drive pinion akan memutar ring gear . Dengan berputarnya  ring gear maka differential case akan terbawa juga untuk berputar. Karena beban roda kiri lebih besar dari roda kanan saat belok ke kiri , maka side gear sebelah kiri akan memberi perlawanan terhadap pinion gear untuk tidak berputar . Gaya perlawanan dari side gear kiri ini akan membuat pinion gear menjadi berputar mengitari side gear kiri. Dengan berputarnya pininon gear , maka side gear kanan akan diputar oleh pinion gear. Sehingga side gear kanan akan berputar lebih cepat dari side gear kiri.  Gerakan side gear ini akan diteruskan ke as roda kemudian ke roda. Untuk roda kanan akan berputar lebih cepat daripada roda kiri karena  side gear kanan berputar lebih cepat.

Penggerak Sudut
1. Bagian – bagian poros penggerak aksel


1. Rumah Penggerak Aksel
2. Gigi Pinion
3. Gigi Korona
4. Gigi Kerucut Samping/Matahari
5. Rumah Differensial
6. Poros Gigi Kerucut Antara
7. Gigi Kerucut Antara/Planet
8. Mounting Rumah Penggerak aksel
9. Tutup Debu
10. Poros Aksel
11. Penghubung Bola/Penghubung CV
12. Bantalan Rumah Diferensial
13. Bantalan Poros Pinion
14. Sil Oli
2. Penggunaan :
Kendaraan dengan motor memanjang, untuk meneruskan putaran ke roda-roda diperlukan penggerak sudut. Karena arah putaran motor berbeda dengan arah putaran roda – roda
3. Fungsi :

• Merubah arah putaran dari arah putaran mesin ke kanan ( a ) menjadi arah putaran maju ( b ) ke roda – roda
4. Jenis Penggerak Sudut
Pada saat sekarang penggerak aksel hanya menggunakan penggerak sudut roda korona. Tetapi pada sistem lama, misalnya merek PEUGEOT menggunakan penggerak roda cacing.
Perbandingan gigi pada : • Sedan station antara 3,5 : 1 s/d 4,5 : 1
• Truk antara 5 : 1 s/d 12 : 1
Jenis biasa :
Sumbu poros pinion segaris dengan aksis roda korona Konstruksi ini hanya digunakan pada truk
Kerugian :
• Suara tidak halus
• Gaya pada gigi besar ( Konstruksi Berat )

Jenis biasa :
Sumbu poros pinion segaris dengan aksis roda korona Konstruksi ini hanya digunakan pada truk
Kerugian :
• Suara tidak halus
• Gaya pada gigi besar ( Konstruksi Berat )
Jenis Hypoid
Sumbu poros pinion tidak segaris dengan aksis roda korona
Konstruksi ini : Digunakan pada sedan, station dan truk
Keuntungan :
• Suara halus
• Permukaan gigi yang memindahkan gaya lebih besar
• Poros penggerak ( Gardan ) lebih rendah
Kerugian :
• Perlu oli khusus GL 4 atau GL 5
• Gesekan antara gigi lebih besar

5. Bentuk Gigi
Dari bentuk giginya, roda korona ada 2 macam
• Klingenberg
• Gleason

Klingenberg
• Tebal puncak gigi bagian dalam dan bagian luar sama (A=B)
• Disebut gigi spiral karena bentuk gigi sebagian dari busur spiral
• Kebanyakan digunakan pada mobil Eropa dan Jepang

Gleason
• Tebal puncak gigi bagian dalam dan bagian luar tidak sama (a?b)
• Disebut gigi lingkar karena bentuk – bentuk gigi sebagian dari busur lingkaran
• Kebanyakan digunakan pada mobil Amerika
6. Penyetelan Penggerak Aksel

1. Tinggi pinion
Untuk mendapatkan posisi gigi pinion yang tepat terhadap gigi roda korona
2. Pre – load pinion
Agar keausan bantalan tidak menyebabkan kebebasan bantalan
3. Celah bebas gigi roda korona ( Back Lash )
Roda korona dapat berputar dengan baik/halus dan tidak menimbulkan suara persentuhan gigi atau suara dengung
4. Pre – load bantalan rumah diferensial ( Keseluruhan )
Agar keausan bantalan tidak menimbulkan kebebasan bantalan / gerak aksial roda korona
5. Memeriksa Persinggungan gigi
Untuk menempatkan posisi permukaan kontak gigi pinion dan roda korona benar ( di tengah – tengah ) sehinggga suara halus dan keausan merata
7. Bentuk Rumah Aksel ( Penggerak Aksel )
Dari bentuk rumah penggerak aksel dapat dibedakan tiga macam :
• Aksel Banjo
• Aksel Spicer
• Aksel Terompet
7.1. Aksel Banjo

Rumah bantalan lebih kuat menahan gaya ke samping / aksial roda korona kurang kuat, biasa digunakan pada kendaraan sedan, Station dan Jep
7.2. Aksel Spicer

Rumah bantalan lebih kuat menahan gaya ke samping / aksial roda korona jenis ini sering digunakan pada jeep dan truk
7.4. Aksel Terompet

Rumah bantalan merupakan satu kesatuan yang kokoh dengan rumah aksel, jenis ini paling kuat menahan gaya ke samping / aksial roda korona biasanya digunakan pada jenis kendaraaan berat
Jarang lagi digunakan pada kendaraan, karena :
• Konstruksi rumit
• Penyetelan sulit
• Harga mahal
Read more at http://machrusafif.blogspot.com/2013/03/sistem-differensialgardan.html#PLdYibwJDJB72pdV.99 
 
Copyright © 2013. Tips OTOMOTIF